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Abstract The concept of distance among vectors is considered in this paper. In e decisional procadure of choice
between different altemnatives the definition of such a distance assumes a particular relevance to perform both 2
sensitivity analysis and a conflict analysis. In fact the sensitivity analysis can be analytically formulated as a
minimisation problem congisting in finding the minimum distance from the reference vector of parameters at which a
rank reversal occurs. In conflict analysis one of the key points is to measure the distance between the positions of
different decision makers. Since frequently a way of describing preferences consists of giving a ranking vector
conceming either the objectives or the alternatives directly, such problem is again a problem of distances between
vectors.

Of course the distance among vectors is not univocally determined, and different definitions are possible. Many
proposals have been made in the literature, which are briefly reviewed in this paper, and a new very simple definition of
distance, namely the angie between the two vectors in the space of their components, is given. The advantage of this
“angle distance” is that it is invariant with respect to an eventual normalization of the parameter vectors. This can be
very important, for example, for a sensitivity analysis on a vector of weights which are defined with an arbitrary
normalization.

1. INTRODUCTION distance from the reference vector at which a rank
reversal occurs.  Such minimum distance is a2 measure

Multi-criteriz decision analysis is always characterized of the robustness of the solution corresponding to the
by uncertainty and conflictuality, that may regard: reference vector. For each alternative the vector at
- a single value, e.g. the impact estimate of a certain minimum distance from the reference one at which it

action on a criterion; classifies in the first position can be computed, being a
- a function, e.g. & value function (making reference to maasure of the competitiveness of such alternative.

the classical Keeney and Raiffa multi-attribute value

theory [1976]); When many decision makers or interest groups are
- a vector, e.g. the vector of weights showing the present, conflictuality is hikely to occur. Conflict is

relative importance of the different criteria; characterised by at least two reference vectors, each
- all the possible combinations of the previous supported by one or more actors.  Attempts 1o recduce

elements, including matrices. or solve the conflict can be done through negotiation.
In this paper we refer to the vector case, This case is The analytical support to negotiation consists mainly in
very important since it includes the vector of weights, giving a clear information (see Kacprzyk and Fedrizzi
which reflects the subjective value system of the {1988] and Lewandowski et al. {1980] for discussions
decision maker and is one of the key points of a multi- on conflict indicators). Conflict indicators can be
criteria analysis, as well as the vector of ranking of the obtained based on the distances between the vectors:
alternatives, on which most frequently conflict analysis ali the distances between pairs of decision makers can
focuses. be computed and ordered in a matrix D, whose generic

element d, is the distance between the vectors of

When the estimate of a reference vector is uncertain decision maker i and decision maker j. The matrix D
the aim of sensitivity analysis is to check the synthesises the main elements which determine a
robustness of the found solution {typically a ranking of higher or lower degree of conflic:
the alternatives), to point out the vector elements that - the number of vectors which are different is the
are ¢ritical because a small change m their value may number of clements d; = 0 (the higher the number the
cause a rank reversal, and to show which are the higher the conflict);
alternatives that are really competitive, since they - the uniformity of distribution of the decision makers
classify in the first position for feasible values of the judgements (it is more conflictual a situation I
vector. The sensitivity analysis can be analytically which the decision makers distribute their
formulated as a minimisation problem (Rios Insua and judgements uniformly than one in which almost the
Fremch [1991]), consisting in finding the minimum all of them agree on a judgement and only a few
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support different ones) can be measured by the
standard deviation of the matrix elements (the higher
the standard deviation the lower the conflict);

the average distance among the decision makers
vectors 15 the average of all the elements of D (the
higher the average the higher the conflict). The
average distance can aiso be computed on any
squared submatrix of D obtained considering only the
rows and columns corresponding to a decision
makers subset.

These three indexes are global conflict indicators since
they give information about the overall conflict without
specifying anything on the single decision makers,
Individual conflict indexes can be useful in the
negotiation, to determine which are the most critical
decision makers. Again the matrix D gives the
opportunity to compute individual conflict indexes; the
sum of the elements of a row gives an indication of the
distance from the row decision maker of all the others,
while the sum of the elements of a column gives an
indication of the distance of the column decision maker
from all the others.

The concept of distance among vectors is therefore
central in both sensitivity and conflict analysis. Many
different measures of such a distance are possible,
leading, in general, to different resuits. In the next
Section the main classes of distances are briefly
reviewed and in Section 3 a new definition, the “angle
distance”, {3 introduced,

2. DISTANCE AMIONG VECTORS

The distance among vectors is not defined univocally,
We give here a general classification and some
examples of specific definitions (see also Bogart
[1973} and [1975] ), considering both ranking (ordinat)
vectors and score {numerical) ones.  Of course the
distances defined for ordinal vectors can be used for
numerical ones. The opposite can also be done, but
introducing some arbitrariety, for example by
attributing to each element of ordinal vectors a score
which comresponds to its position in the ranking.

Main classes of distances:

- symmelric/usymmetric distances: the distance d(A,B)
among the two vectors A and B is symmetric if it is
always equal o the distance d(B.A) among B and A:
the distance is asymmetric inthe opposite ease;

- lexicographic  /  compensative /  naot purely
compensative distances: & distance among two
vectors is lexicographic if, taken one of the two as
refersnee, a difference in the position of one element
cannot be compensated by any difference of positions
of inferior elements. A compensative distance aliows
such a compensation, since it considers the number
and the magnitude of differences in the elements
pesitions without giving importance to the reference
element position. A not purely compensative
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distance is somehow intermediate: there can be a
compensation but differences in the positions of
superior elements are weighted more than differences
in the positions of inferior ones. Lexicographic and
not purely compansative distances are always
asymmetric, Lexicographic and not purely
compensative distances are particularly used for the
ranking vectors, since a difference in the first
positions of the ranking is usually considered much
more important than a difference in the [ower
positions, or, more generally, the k-th position is
more important than the (k+1)-th.

2.1 Ordinal vectors

When dealing with ordinal vectors, one should
distinguish between strong and weak ranking vectors,
as well as between complete or partial ones. To fix the
ideas, we refer in the following examples o strong and
complete ranking vectors.

Some examples of distances defined for ordinal vectors
are given here:

1) Kendall, symmetric and compensative distance:

dis

nﬂCC Wn
d(A4,B) =~ d

Gee 1 dis

with n,. and ng number of accordances and of
disaccordances between the two vectors. If d{A B)=1
there are no disaccordances between the two vectors,
while if d(AB)=-1 there are no accordances;
intermediate values describe intermediate situations.
If, for example, given three elements o, B and v, the
two ranking vectors are

A=[a By] B=[y B ]

then

d(A,B):d(B,A}mE:—%
1+2

=—0333

2} Symmetric and compensative distance:

d{4,By= % D{,j)

hid=j

with D(i,j)=0 if the ranking order between element i
and j is the same in the two vectors, D(i,1y=1 otherwise.
Considering the {n-i)}+(n-2)+...+1 disequations which
are needed to describe the ranking of an n-dimensional
vector, this distance is equal to the number of
disequations which are different in the description of
the two rankings. If for example



A=l Pyl B=[ay BI'
then

dAB)=dB,A)=0+0+1=1
3) Lexicographic and asymmetric distance with base h:
d(A,By= Y |i-b|-h"

=1

where b, is the position in the B vector of the
alternative which is in position [ in the A vector, 1 is
the aumber of elements of each vector, h is an arbitrary
whole number such that b 2 n, which is called base of
the distance. Fixed h = 10 and given the two vectors

A=la Byl B=[Byal
then
d(ABy=2-107+1.10'+1-10°=211

ABAY=1-107+1-10'+2- 10°= 112,

2.2 Mumerical vectors
The same classes of distances can be used to classify
the distances among numerical vectors. A further

distinction can be done between distances based on
differences and on ratios of values.

Examples

1) Euclidean squared, compensative and symimetric,
based on differences, distance:

af(A,B):i(a, -5)

where 11 is the number of elements of the vectors and a,
and b, are the scores of the i-th element in vector A and
B respectively. If, for example:

A=[2513] §3=[262]T
then
d{A.B)=d(B,A)= (2-2F +(5-6)° + (3-2)* =2

2) Tehebycheft, compensative and symmetric, based
on differences, distance:

d(A,B)=1n?xWi—bJ
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where a, and b, are the scores of the i-th element in
vector A and B respectively. If, for example:
A=[253) B6i]
then
d(AB)=d(B,A)=max {1,1,2}=2

3) Klafszky et al. [1989], asymmetric and not purely
compensative, based on differences and ratios,
distance, for vectors normalised sothatZa, =L b =1

" — b
d{4,B)= Z I_a_*__wi_l.
i=1

1-a,
where n is the number of elements of the vectors and 2,
and b, are the scores of the i-th element in vector A and
B respectively. If, for example:

A=[2 .5 3 B={2.6 .27
then
d(A,B):—O—+9;},+—(—)£=O.343
08 G35
d(B,A):m?—+ﬁ+pi=O.375
08 04 08

4) Logarithmic, compensative and symmeiric, based on
ratios, distance, for vectors with no zero elements:

(4,8 =3 m‘;—'l
=1 i

with a, and b, scores of the i-th element in vector A
and B respectively. If, for example:

A=[2 537 B={262]
then
d(AB)=d(B,A)=0+0.18+ (.41 =0.59

3. THE DISTANCE BETWEEN NORMALISED
VECTORS

Problems Connected fo the Use of Normalised
Yectors

3.1

A problem arises for numerical vectors which are
defined via a linear normalisation maintaining the
ratios between the vector elements, as, for example, the
vector of weights determining the relative importance
of the different criteria. Chosen a definition of
distance and given three vectors A, B, C, the distance



d(A,B) can result greater or smaller then d(A,O)
depending on the normalisation of the vectors. Two
simple examples will show this fact for both distances
based on differences and ratios.

Let’s consider two different normalisations for three
vectors A, B, and C: with the first normalisation
(vectors A', B, and C') the sum of the elements of each
vector is set equal to 1, while with the second (vectors
A", BY, and C" } the first element of each vector is set

equal io one:
M|
B =

Y
vl "%
e

Using the most common Euclidean squared distance
{based on differences) it results:

AH
1

d(A',B' )=0037 d(A’,C' )=0.056

d(A", B")=0.563 d(A",C")=0250.
With the first normalisation B looks closer to A than C,
while with the second C looks closer to A than B.

Since the normalisation has to maintain the ratios
between the vectors elements one could think that
distances based on ratios do not present this probiem,
but that’s not the case, as shown by the following
example of two different normalisations for three
vectors A, B, and C: with the first normalisation
{vectors A' , B', and C' ) the first element of each
vector is set equal to 1, while with the second (vectors
A", B", and C") the last element of each vector is set
equal to one:

! ] 1
A'=l4 B =2 Cr=]4

E 2 1

i u 1’
4" =4 B"=| 1 Cr=14

1 1 B

Using the logarithmic ratio distance (based on ratios) it
results:
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d(A',B' )=1386 d(A',C )=1.79]

d{A",B")=207% d(A",C")=1.701.
With the first normalisation B looks cioser to A than C,
while with the second C looks closer to A than 3.

This fact is of course unacceptable, because it makes
any result of both a sensitivity or a conflict analysis for
normalised vectors completely unreliable.
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Figure I: The bi-dimensional vectors A and B
represented in the space of their components x and v.
The two dotted lines determine two different
normalisations of the vectors.

A simple geometrical interpretation (see Figure 1) can
explain the reason behind such behaviour and help
finding a solution. Let us consider three bi-
dimensional vectors A, B, and C. In the x-y space of
their components the three vectors are represented by
three lines. Each normalisation of a vector determine a
point in the plane. For instance if we consider vector
A, and we normalise it in such a way that the sum of jts
components is equal to one, we obiain point A" if we
normalise it in such a way that its second component is
equal to one, we obtain point A", If we want to know
the distance between vectors A and B (A and Q), we
cannot measure it as the (Euclidean) distance A'B'
(A'C") between points A' and B' (A’ and C") or as the
distance A"B" (A"C") between points A" and B" (A"
and C"). In fact it can happen, as shown in Figure |
and depending on the relative slopes of the vectors and
of the lines determining the normalisation, that A'R' >
A'C' but A"B" < A"C". What is invariant with respect
to any normalisation is the angle that two vectors form
in the space of their components: obviously the angle 9
formed by points A’ and B' with respect to the origin
coincide with the angle formed by points A" and B
with respect to the origin.

Synthesising we can affirm that the information that
the normalised vectors give is the direction they define
in the space of their components and not a precise
point in such a space. A correct way of measuring



distances between vectors is therefore to measure the
distance between their directions. A very simple
distance which satisfy this requirement is the “angle
distance” proposed in the next paragraph.

3.1 The Angle Distance

As seen in the previous paragraph, the distance
between two vectors A and B can be defined as a
measure of the angle 8 they form in the space of their
components. We propose here fo use an “angle
distance” which is the cosine of the angle 8, and has
the following formula:

b

i

d(4.B)=cos 9= .
P

=1 4

where n is the dimension of the vectors, g, and b, are
the scores of the I-th element in vector A and B
respectively, and

a, b,

Note that — (wu'w) is the director cosine of
P4 Fs

vector A {B) with respect {o the i-th ax.

If vou want to minimise 0, as in the case of sensitivity

analysis, you will have to maximise the angle distance

(cos9).

This angle distance is invariant with respect to the

normalisation of the vectors.

4, CONCLUDING REMARKS

The problem of measuring distances ameng vectors is
central in both sensitivity and conflict analysis. A
synthetic review of the main classes and definitions of
distances for both ordinal and score vectors has been
given. It has been shown that for numerical vectors
which undergo an arbitrary normalization, with the
onaly requirement that the ratios between the vector
elements is maintained, both distances based on
differences and based on ratios are unacceptable. In
fact using such distances the resulis of a sensitivity or a
conflict analysis depend on the chosen arbitrary
normalization.  This means that such results are
completely unreliable, and furthermore that they could
be manipulated by the analyst to obtain a desired
result. At this point the reason to perferm a sensitivity
or a conflict analysis could be only to confuse the
actors of the decisional process. However, by means
of a geometrical interpretation, a new definition of
distance among vectors, the “angle distance”, has been
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given. Such angle distance is independent from the
normalization, so that it can be used for reliable
sensitivity and conflict analysis.

Two directions of further development are sketched
here. The first consists in exploring all the family of
invariant distances and their geometric interpretations.
For example the angle distance defined in this paper
could be considered the angle-analogue to the
Euclidean distance, but the angle-analogue to the
Tchebycheff distance or to other distances, eventually
nen-compensative and asymmetric, could also be
defined. The second direction of development consists
in individuating for both semsitivity and conflict
analysis meaningful indexes based specifically on the
angle distance.
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